Roll No. \square Total No. of Pages: 02
Total No. of Questions : 09

B.Tech. (2011 Onwards) (Sem.-1)

ENGINEERING MATHEMATICS - I
Subject Code : BTAM-101
Paper ID : [A1101]
Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Solve the following :
a) Find the length of any arc of the curve $r=a \sin ^{2} \frac{\theta}{2}$.
b) If $z=f(x, y)$ and $x=e^{u}+e^{-v}, y=e^{-u} e^{v}$, prove that $\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}$.
c) In polar co-ordinates $x=r \cos \theta, y=r \sin \theta$, show that $\frac{\partial(x, y)}{\partial(r, \theta)}=r$.
d) Using Euler's theorem, prove that if $\tan u=\frac{x^{3}+y^{3}}{x-y}$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.
e) Write Taylor's series for a function of two variables.
f) Find the value of ' a ' for which the vectors $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}+a \hat{j}+3 \hat{k}$ are perpendicular.
g) If $r=x \hat{i}+y \hat{j}+z \hat{k}$ and $|\vec{r}|=r$, show that $\nabla f(r)=f^{\prime}(r) \nabla r$.
h) State Stoke's theorem.
i) Find the volume common to the two cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$.
j) Evaluate $\int_{C}\left(x^{2}+y z\right) d S$, where C is the curve defined by $x=4 y, z=3$ from $\left(2, \frac{1}{2}, 3\right)$ to $(4,1,3)$.

SECTION-B

2. Find the radius of curvature at any point of following curves :
a) $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$
b) $S=a \log (\sec \psi+\tan \psi)+a \sec \psi \tan \psi$
3. The cardiod $r=a(1+\cos \theta)$ revolves about the initial line. Find the volume of the solid generated.
4. a) Find the minimum value $x^{2}+y^{2}+z^{2}$ of subject to the condition that $x y z=a^{3}$.
b) Find the maximum and minimum values of $2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}$.
5. a) If $f(x, y)=\tan ^{-1}(x y)$, find an approximate value of $f(1.1,0.8)$ using the Taylor's series linear approximation.
b) Show that the function $f(x, y)=\left\{\begin{array}{cl}\frac{x^{3}+2 y^{3}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$
(i) is continuous at $(0,0)$
(ii) possesses partial derivatives at $(0,0)$.

SECTION-C

6. Find the centre of gravity of a plate whose density $\rho(x, y)$ is constant and is bounded by the curves $y=x^{2}$ and $y=x+2$. Also, find the moment of inertia about the axis.
7. a) If $a=\sin \theta \hat{i}+\cos \theta \hat{j}+\theta \hat{k}, b=\cos \theta \hat{i}-\sin \theta \hat{j}-3 \hat{k}$ and $c=2 \hat{i}+3 \hat{j}-\hat{k}$, find $\frac{d}{d \theta}(\vec{a} \times(\vec{b} \times \vec{c}))$ at $\theta=0$.
b) A particle moves along the curve $x=3 t^{2}, y=t^{2}-2 t$ and $z=t^{3}$. Find its velocity and acceleration at $t=1$ in the direction of $\hat{i}+\hat{j}+\hat{k}$.
8. Verify Gauss divergence theorem for $\vec{f}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$, taken over the region bounded by the cylinder $x^{2}+y^{2}=4, z=0$ and $z=3$.
9. a) Evaluate the integral $\int_{0}^{2} \int_{0}^{\frac{y^{2}}{2}} \frac{y}{\sqrt{x^{2}+y^{2}+1}} d x d y$.
b) Prove that $\operatorname{div}(f \vec{v})=f(\operatorname{div} \vec{v})+(\operatorname{grad} f) . \vec{v}$, where f is scalar function.
